1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#include <kernel/mem/alloc.h>
#include <kernel/mem/virt.h>
#include <kernel/panic.h>
#include <kernel/proc.h>
#include <kernel/vfs/request.h>
#include <kernel/vfs/root.h>
#include <shared/mem.h>
int vfsreq_create(struct vfs_request req_) {
struct vfs_request *req = kmalloc(sizeof *req); // freed in vfsreq_finish
memcpy(req, &req_, sizeof *req);
if (req->backend)
req->backend->refcount++;
if (req->caller) {
process_transition(req->caller, PS_WAITS4FS);
req->caller->waits4fs.req = req;
}
if (!req->backend || !req->backend->potential_handlers)
return vfsreq_finish(req, -1);
struct vfs_request **iter = &req->backend->queue;
while (*iter != NULL) // find free spot in queue
iter = &(*iter)->queue_next;
*iter = req;
return vfs_backend_tryaccept(req->backend);
}
int vfsreq_finish(struct vfs_request *req, int ret) {
if (req->type == VFSOP_OPEN && ret >= 0) {
// open() calls need special handling
// we need to wrap the id returned by the VFS in a handle passed to
// the client
if (req->caller) {
handle_t handle = process_find_handle(req->caller, 0);
if (handle < 0)
panic_invalid_state(); // we check for free handles before the open() call
struct handle *backing = handle_init(HANDLE_FILE);
backing->file.backend = req->backend;
req->backend->refcount++;
backing->file.id = ret;
req->caller->handles[handle] = backing;
ret = handle;
} else {
// caller got killed
// TODO write tests & implement
panic_unimplemented();
}
}
if (req->input.kern)
kfree(req->input.buf_kern);
if (req->caller) {
assert(req->caller->state == PS_WAITS4FS);
regs_savereturn(&req->caller->regs, ret);
process_transition(req->caller, PS_RUNNING);
}
vfs_backend_refdown(req->backend);
kfree(req);
return ret;
}
int vfs_backend_tryaccept(struct vfs_backend *backend) {
struct vfs_request *req = backend->queue;
if (!req) return -1;
/* ensure backend is ready to accept request */
if (backend->is_user) {
if (!backend->user.handler) return -1;
} else {
assert(backend->kern.ready);
if (!backend->kern.ready(backend)) return -1;
}
backend->queue = req->queue_next;
if (backend->is_user) {
return vfs_backend_user_accept(req);
} else {
assert(backend->kern.accept);
return backend->kern.accept(req);
}
}
int vfs_backend_user_accept(struct vfs_request *req) {
struct process *handler;
struct fs_wait_response res = {0};
int len = 0;
assert(req && req->backend && req->backend->user.handler);
handler = req->backend->user.handler;
assert(handler->state == PS_WAITS4REQUEST);
assert(handler->handled_req == NULL);
// the virt_cpy calls aren't present in all kernel backends
// it's a way to tell apart kernel and user backends apart
// TODO check validity of memory regions somewhere else
if (req->input.buf) {
len = min(req->input.len, handler->awaited_req.max_len);
if (!virt_cpy(handler->pages, handler->awaited_req.buf,
req->input.kern ? NULL : req->caller->pages, req->input.buf, len))
goto fail; // can't copy buffer
}
res.len = len;
res.capacity = req->output.len;
res.id = req->id;
res.offset = req->offset;
res.op = req->type;
if (!virt_cpy_to(handler->pages,
handler->awaited_req.res, &res, sizeof res))
goto fail; // can't copy response struct
process_transition(handler, PS_RUNNING);
handler->handled_req = req;
req->backend->user.handler = NULL;
regs_savereturn(&handler->regs, 0);
return 0;
fail:
panic_unimplemented(); // TODO
}
void vfs_backend_refdown(struct vfs_backend *b) {
assert(b);
assert(b->refcount > 0);
if (--(b->refcount) > 0) return;
assert(!b->queue);
kfree(b);
}
|