1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
#include <camellia/syscalls.h>
#include <kernel/arch/generic.h>
#include <kernel/execbuf.h>
#include <kernel/main.h>
#include <kernel/mem/alloc.h>
#include <kernel/mem/virt.h>
#include <kernel/panic.h>
#include <kernel/proc.h>
#include <kernel/vfs/mount.h>
#include <shared/mem.h>
#include <stdint.h>
struct process *process_first;
struct process *process_current;
static uint32_t next_pid = 0;
struct process *process_seed(struct kmain_info *info) {
process_first = kmalloc(sizeof *process_first);
memset(process_first, 0, sizeof *process_first);
process_first->state = PS_RUNNING;
process_first->pages = pagedir_new();
process_first->mount = vfs_mount_seed();
process_first->id = next_pid++;
// map the stack to the last page in memory
pagedir_map(process_first->pages, (userptr_t)~PAGE_MASK, page_zalloc(1), true, true);
process_first->regs.rsp = (userptr_t) ~0xF;
// map .shared
extern char _shared_len;
for (size_t p = 0; p < (size_t)&_shared_len; p += PAGE_SIZE)
pagedir_map(process_first->pages, (userptr_t)p, (void*)p, false, true);
// map the init module as rw
void __user *init_base = (userptr_t)0x200000;
for (uintptr_t off = 0; off < info->init.size; off += PAGE_SIZE)
pagedir_map(process_first->pages, init_base + off, info->init.at + off,
true, true);
process_first->regs.rcx = (uintptr_t)init_base; // SYSRET jumps to %rcx
return process_first;
}
struct process *process_fork(struct process *parent, int flags) {
struct process *child = kmalloc(sizeof *child);
memset(child, 0, sizeof *child);
child->pages = pagedir_copy(parent->pages);
child->regs = parent->regs;
child->state = parent->state;
assert(child->state == PS_RUNNING); // not copying the state union
child->noreap = (flags & FORK_NOREAP) > 0;
child->sibling = parent->child;
child->child = NULL;
child->parent = parent;
parent->child = child;
child->id = next_pid++;
// TODO control this with a flag
child->handled_req = parent->handled_req;
parent->handled_req = NULL;
if ((flags & FORK_NEWFS) == 0 && parent->controlled) {
child->controlled = parent->controlled;
child->controlled->potential_handlers++;
child->controlled->refcount++;
}
child->mount = parent->mount;
assert(child->mount);
child->mount->refs++;
for (handle_t h = 0; h < HANDLE_MAX; h++) {
child->handles[h] = parent->handles[h];
if (child->handles[h])
child->handles[h]->refcount++;
}
return child;
}
void process_kill(struct process *p, int ret) {
if (p->state != PS_DEAD) {
if (p->handled_req) {
vfsreq_finish_short(p->handled_req, -1);
p->handled_req = NULL;
}
if (p->controlled) {
// TODO vfs_backend_user_handlerdown
assert(p->controlled->potential_handlers > 0);
p->controlled->potential_handlers--;
if (p->controlled->potential_handlers == 0) {
// orphaned
struct vfs_request *q = p->controlled->queue;
while (q) {
struct vfs_request *q2 = q->queue_next;
vfsreq_finish_short(q, -1);
q = q2;
}
p->controlled->queue = NULL;
}
if (p->controlled->user.handler == p) {
assert(p->state == PS_WAITS4REQUEST);
p->controlled->user.handler = NULL;
}
vfs_backend_refdown(p->controlled);
p->controlled = NULL;
}
if (p->state == PS_WAITS4FS) {
assert(p->reqslot);
p->reqslot->caller = NULL; /* transfer ownership */
p->reqslot = NULL;
} else if (p->reqslot) {
kfree(p->reqslot);
}
if (p->state == PS_WAITS4PIPE) {
struct process **iter = &p->waits4pipe.pipe->pipe.queued;
while (*iter && *iter != p) {
assert((*iter)->state == PS_WAITS4PIPE);
iter = &(*iter)->waits4pipe.next;
}
assert(iter && *iter == p);
*iter = p->waits4pipe.next;
}
if (p->state == PS_WAITS4TIMER)
timer_deschedule(p);
for (handle_t h = 0; h < HANDLE_MAX; h++)
handle_close(p->handles[h]);
vfs_mount_remref(p->mount);
p->mount = NULL;
process_transition(p, PS_DEAD);
p->death_msg = ret;
if (p->execbuf.buf) {
kfree(p->execbuf.buf);
p->execbuf.buf = NULL;
}
pagedir_free(p->pages);
// TODO VULN unbounded recursion
struct process *c2;
for (struct process *c = p->child; c; c = c2) {
c2 = c->sibling;
process_kill(c, -1);
}
}
assert(!p->child);
process_try2collect(p);
if (p == process_first) shutdown();
}
int process_try2collect(struct process *dead) {
struct process *parent = dead->parent;
int ret = -1;
assert(dead && dead->state == PS_DEAD);
if (!dead->noreap && parent && parent->state != PS_DEAD) { // might be reaped
if (parent->state != PS_WAITS4CHILDDEATH) return -1;
ret = dead->death_msg;
regs_savereturn(&parent->regs, ret);
process_transition(parent, PS_RUNNING);
}
process_free(dead);
return ret;
}
void process_free(struct process *p) {
assert(p->state == PS_DEAD);
assert(!p->child);
if (!p->parent) return;
process_forget(p);
kfree(p);
}
void process_forget(struct process *p) {
assert(p->parent);
if (p->parent->child == p) {
p->parent->child = p->sibling;
} else {
// this would be simpler if siblings were a doubly linked list
struct process *prev = p->parent->child;
while (prev->sibling != p) {
prev = prev->sibling;
assert(prev);
}
prev->sibling = p->sibling;
}
}
static _Noreturn void process_switch(struct process *proc) {
assert(proc->state == PS_RUNNING);
process_current = proc;
pagedir_switch(proc->pages);
if (proc->execbuf.buf)
execbuf_run(proc);
else
sysexit(proc->regs);
}
_Noreturn void process_switch_any(void) {
for (;;) {
if (process_current && process_current->state == PS_RUNNING)
process_switch(process_current);
struct process *found = process_find(PS_RUNNING);
if (found) process_switch(found);
cpu_pause();
}
}
struct process *process_next(struct process *p) {
/* is a weird depth-first search, the search order is:
* 1
* / \
* 2 5
* /| |\
* 3 4 6 7
*/
if (!p) return NULL;
if (p->child) return p->child;
if (p->sibling) return p->sibling;
/* looking at the diagram above - we're at 4, want to find 5 */
while (!p->sibling) {
p = p->parent;
if (!p) return NULL;
}
return p->sibling;
}
struct process *process_find(enum process_state target) {
for (struct process *p = process_first; p; p = process_next(p)) {
if (p->state == target) return p;
}
return NULL;
}
handle_t process_find_free_handle(struct process *proc, handle_t start_at) {
// TODO start_at is a bit of a hack
handle_t handle;
for (handle = start_at; handle < HANDLE_MAX; handle++) {
if (proc->handles[handle] == NULL)
break;
}
if (handle >= HANDLE_MAX) handle = -1;
return handle;
}
struct handle *process_handle_get(struct process *p, handle_t id) {
if (id < 0 || id >= HANDLE_MAX) return NULL;
return p->handles[id];
}
void process_transition(struct process *p, enum process_state state) {
enum process_state last = p->state;
p->state = state;
switch (state) {
case PS_RUNNING:
assert(last != PS_DEAD);
break;
case PS_DEAD:
// see process_kill
break;
case PS_WAITS4CHILDDEATH:
case PS_WAITS4FS:
case PS_WAITS4REQUEST:
case PS_WAITS4PIPE:
case PS_WAITS4TIMER:
assert(last == PS_RUNNING);
break;
case PS_LAST:
panic_invalid_state();
}
}
|