1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
#include <kernel/arch/generic.h>
#include <kernel/mem/alloc.h>
#include <kernel/mem/virt.h>
#include <kernel/panic.h>
#include <kernel/proc.h>
#include <kernel/vfs/mount.h>
#include <shared/mem.h>
#include <stdint.h>
struct process *process_first;
struct process *process_current;
static uint32_t next_pid = 0;
struct process *process_seed(void) {
struct process *proc = kmalloc(sizeof *proc);
proc->pages = pagedir_new();
proc->state = PS_RUNNING;
proc->sibling = NULL;
proc->child = NULL;
proc->parent = NULL;
proc->mount = vfs_mount_seed();
proc->id = next_pid++;
proc->handled_req = NULL;
proc->controlled = NULL;
process_first = proc;
for (int i = 0; i < HANDLE_MAX; i++)
proc->handles[i].type = HANDLE_EMPTY;
// map the stack to the last page in memory
pagedir_map(proc->pages, (userptr_t)~PAGE_MASK, page_alloc(1), true, true);
proc->regs.esp = (userptr_t) ~0xF;
// map the kernel
// yup, .text is writeable too. the plan is to not map the kernel
// into user memory at all, but i'll implement that later. TODO
for (size_t p = 0x100000; p < (size_t)&_bss_end; p += PAGE_SIZE)
pagedir_map(proc->pages, (userptr_t)p, (void*)p, false, true);
// the kernel still has to load the executable code and set EIP
return proc;
}
struct process *process_fork(struct process *parent) {
struct process *child = kmalloc(sizeof *child);
memcpy(child, parent, sizeof *child);
child->pages = pagedir_copy(parent->pages);
child->sibling = parent->child;
child->child = NULL;
child->parent = parent;
parent->child = child;
parent->handled_req = NULL; // TODO control this with a flag
child->id = next_pid++;
return child;
}
void process_free(struct process *p) {
assert(p->state == PS_DEADER);
pagedir_free(p->pages);
if (p->child) { // TODO
// panic_invalid_state();
return;
}
if (p->parent && p->parent->child == p) {
p->parent->child = p->sibling;
} else {
// this would be simpler if siblings were a doubly linked list
struct process *prev = p->parent->child;
while (prev->sibling != p) {
prev = prev->sibling;
assert(prev);
}
prev->sibling = p->sibling;
}
kfree(p);
}
void process_switch(struct process *proc) {
assert(proc->state == PS_RUNNING);
process_current = proc;
pagedir_switch(proc->pages);
sysexit(proc->regs);
}
_Noreturn void process_switch_any(void) {
struct process *found = process_find(PS_RUNNING);
if (found) process_switch(found);
process_idle();
}
_Noreturn void process_idle(void) {
struct process *procs[16];
size_t len = process_find_multiple(PS_WAITS4IRQ, procs, 16);
if (len == 0) {
mem_debugprint();
cpu_shutdown();
}
for (;;) {
for (size_t i = 0; i < len; i++) {
if (procs[i]->waits4irq.ready()) {
/* if this is entered during the first iteration, it indicates a
* kernel bug. this should be logged. TODO? */
procs[i]->waits4irq.callback(procs[i]);
process_switch_any();
}
}
cpu_pause();
}
}
struct process *process_next(struct process *p) {
/* is a weird depth-first search, the search order is:
* 1
* / \
* 2 5
* /| |\
* 3 4 6 7
*/
if (!p) return NULL;
if (p->child) return p->child;
if (p->sibling) return p->sibling;
/* looking at the diagram above - we're at 4, want to find 5 */
while (!p->sibling) {
p = p->parent;
if (!p) return NULL;
}
return p->sibling;
}
struct process *process_find(enum process_state target) {
struct process *result = NULL;
process_find_multiple(target, &result, 1);
return result;
}
size_t process_find_multiple(enum process_state target, struct process **buf, size_t max) {
size_t i = 0;
for (struct process *p = process_first;
i < max && p;
p = process_next(p))
{
if (p->state == target) buf[i++] = p;
}
return i;
}
handle_t process_find_handle(struct process *proc) {
handle_t handle;
for (handle = 0; handle < HANDLE_MAX; handle++) {
if (proc->handles[handle].type == HANDLE_EMPTY)
break;
}
if (handle == HANDLE_MAX) handle = -1;
return handle;
}
void process_transition(struct process *p, enum process_state state) {
enum process_state last = p->state;
p->state = state;
switch (state) {
case PS_RUNNING:
assert(last != PS_DEAD && last != PS_DEADER);
break;
case PS_DEAD:
assert(last == PS_RUNNING);
break;
case PS_DEADER:
assert(last == PS_DEAD);
process_free(p);
break;
case PS_WAITS4CHILDDEATH:
case PS_WAITS4FS:
case PS_WAITS4REQUEST:
assert(last == PS_RUNNING);
break;
case PS_WAITS4IRQ:
assert(last == PS_WAITS4FS);
break;
}
}
void process_kill(struct process *proc, int ret) {
// TODO kill children
process_transition(proc, PS_DEAD);
proc->death_msg = ret;
process_try2collect(proc);
if (proc == process_first) {
kprintf("init killed, quitting...");
mem_debugprint();
cpu_shutdown();
}
}
int process_try2collect(struct process *dead) {
struct process *parent = dead->parent;
int ret;
assert(dead->state == PS_DEAD);
switch (parent->state) {
case PS_WAITS4CHILDDEATH:
ret = dead->death_msg;
regs_savereturn(&parent->regs, ret);
process_transition(parent, PS_RUNNING);
process_transition(dead, PS_DEADER);
return ret;
default:
return -1; // this return value isn't used anywhere
// TODO enforce that, somehow? idk
}
}
|