summaryrefslogtreecommitdiff
path: root/src/kernel/proc.c
blob: 2a35acc7f8f9b1d6c1e13bfbc7343cff06aff1cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#include <kernel/arch/generic.h>
#include <kernel/main.h>
#include <kernel/mem/alloc.h>
#include <kernel/mem/virt.h>
#include <kernel/panic.h>
#include <kernel/proc.h>
#include <kernel/vfs/mount.h>
#include <shared/mem.h>
#include <shared/syscalls.h>
#include <stdint.h>

struct process *process_first;
struct process *process_current;

static uint32_t next_pid = 0;

struct process *process_seed(struct kmain_info *info) {
	process_first = kmalloc(sizeof *process_first);
	memset(process_first, 0, sizeof *process_first);
	process_first->state = PS_RUNNING;
	process_first->pages = pagedir_new();
	process_first->mount = vfs_mount_seed();
	process_first->id    = next_pid++;

	// map the stack to the last page in memory
	pagedir_map(process_first->pages, (userptr_t)~PAGE_MASK, page_alloc(1), true, true);
	process_first->regs.esp = (userptr_t) ~0xF;

	// map the kernel
	//   yup, .text is writeable too. the plan is to not map the kernel
	//   into user memory at all, but i'll implement that later. TODO
	for (size_t p = 0x100000; p < (size_t)&_bss_end; p += PAGE_SIZE)
		pagedir_map(process_first->pages, (userptr_t)p, (void*)p, false, true);

	// map the init module as rw
	void __user *init_base = (userptr_t)0x200000;
	for (uintptr_t off = 0; off < info->init.size; off += PAGE_SIZE)
		pagedir_map(process_first->pages, init_base + off, info->init.at + off,
		            true, true);
	process_first->regs.eip = init_base;

	return process_first;
}

struct process *process_fork(struct process *parent, int flags) {
	struct process *child = kmalloc(sizeof *child);
	memcpy(child, parent, sizeof *child);

	child->pages = pagedir_copy(parent->pages);
	child->sibling = parent->child;
	child->child   = NULL;
	child->parent  = parent;
	parent->child  = child;
	child->noreap  = (flags & FORK_NOREAP) > 0;

	parent->handled_req = NULL; // TODO control this with a flag

	if (child->controlled) {
		child->controlled->potential_handlers++;
		child->controlled->refcount++;
	}

	for (handle_t h = 0; h < HANDLE_MAX; h++) {
		if (child->handles[h])
			child->handles[h]->refcount++;
		// no overflow check - if you manage to get 2^32 references to a handle you have bigger problems
	}

	assert(child->mount);
	child->mount->refs++;

	child->id = next_pid++;

	return child;
}

void process_forget(struct process *p) {
	assert(p->parent);

	if (p->parent->child == p) {
		p->parent->child = p->sibling;
	} else {
		// this would be simpler if siblings were a doubly linked list
		struct process *prev = p->parent->child;
		while (prev->sibling != p) {
			prev = prev->sibling;
			assert(prev);
		}
		prev->sibling = p->sibling;
	}
}

void process_free(struct process *p) {
	assert(p->state == PS_DEAD);
	assert(!p->child);

	// also could be done on kill
	vfs_mount_remref(p->mount);
	p->mount = NULL;

	if (p->controlled) {
		vfs_backend_refdown(p->controlled);
		p->controlled = NULL;
	}

	if (!p->parent) return;
	process_forget(p);
	pagedir_free(p->pages); // TODO could be done on kill
	kfree(p);
}

static _Noreturn void process_switch(struct process *proc) {
	assert(proc->state == PS_RUNNING);
	process_current = proc;
	pagedir_switch(proc->pages);
	sysexit(proc->regs);
}

_Noreturn void process_switch_any(void) {
	if (process_current && process_current->state == PS_RUNNING)
		process_switch(process_current);

	struct process *found = process_find(PS_RUNNING);
	if (found) process_switch(found);

	if (process_first->state == PS_DEAD)
		shutdown(); // TODO not the place for this

	cpu_pause();
	process_switch_any();
}

struct process *process_next(struct process *p) {
	/* is a weird depth-first search, the search order is:
	 *         1
	 *        / \
	 *       2   5
	 *      /|   |\
	 *     3 4   6 7
	 */
	if (!p)	return NULL;
	if (p->child)	return p->child;
	if (p->sibling)	return p->sibling;

	/* looking at the diagram above - we're at 4, want to find 5 */
	while (!p->sibling) {
		p = p->parent;
		if (!p) return NULL;
	}
	return p->sibling;
}

struct process *process_find(enum process_state target) {
	struct process *result = NULL;
	process_find_multiple(target, &result, 1);
	return result;
}

size_t process_find_multiple(enum process_state target, struct process **buf, size_t max) {
	size_t i = 0;
	for (struct process *p = process_first;
		i < max && p;
		p = process_next(p))
	{
		if (p->state == target) buf[i++] = p;
	}
	return i;
}

handle_t process_find_handle(struct process *proc, handle_t start_at) {
	// TODO start_at is a bit of a hack
	handle_t handle;
	for (handle = start_at; handle < HANDLE_MAX; handle++) {
		if (proc->handles[handle] == NULL)
			break;
	}
	if (handle >= HANDLE_MAX) handle = -1;
	return handle;
}

struct handle*
process_handle_get(struct process *p, handle_t id, enum handle_type type) {
	struct handle *h;
	if (id < 0 || id >= HANDLE_MAX) return NULL;
	h = p->handles[id];
	if (h == NULL || h->type != type) return NULL;
	return h;
}

void process_transition(struct process *p, enum process_state state) {
	enum process_state last = p->state;
	p->state = state;
	switch (state) {
		case PS_RUNNING:
			assert(last != PS_DEAD);
			break;
		case PS_DEAD:
			// see process_kill
			break;
		case PS_WAITS4CHILDDEATH:
		case PS_WAITS4FS:
		case PS_WAITS4REQUEST:
			assert(last == PS_RUNNING);
			break;

		case PS_LAST:
			panic_invalid_state();
	}
}

void process_kill(struct process *p, int ret) {
	if (p->state != PS_DEAD) {
		if (p->handled_req) {
			vfsreq_finish(p->handled_req, -1);
			p->handled_req = NULL;
		}

		if (p->controlled) {
			// TODO vfs_backend_user_handlerdown
			assert(p->controlled->potential_handlers > 0);
			p->controlled->potential_handlers--;
			if (p->controlled->potential_handlers == 0) {
				// orphaned
				struct vfs_request *q = p->controlled->queue;
				while (q) {
					struct vfs_request *q2 = q->queue_next;
					vfsreq_finish(q, -1);
					q = q2;
				}
				p->controlled->queue = NULL;
			}
			if (p->controlled->user.handler == p) {
				assert(p->state == PS_WAITS4REQUEST);
				p->controlled->user.handler = NULL;
			}

			vfs_backend_refdown(p->controlled);
			p->controlled = NULL;
		}

		if (p->state == PS_WAITS4FS)
			p->waits4fs.req->caller = NULL;

		for (handle_t h = 0; h < HANDLE_MAX; h++)
			handle_close(p->handles[h]);

		process_transition(p, PS_DEAD);
		p->death_msg = ret;

		// TODO VULN unbounded recursion
		struct process *c2;
		for (struct process *c = p->child; c; c = c2) {
			c2 = c->sibling;
			process_kill(c, -1);
		}
	}

	assert(!p->child);
	process_try2collect(p);
}

int process_try2collect(struct process *dead) {
	struct process *parent = dead->parent;
	int ret = -1;

	assert(dead && dead->state == PS_DEAD);

	if (!dead->noreap && parent && parent->state != PS_DEAD) { // might be reaped
		if (parent->state != PS_WAITS4CHILDDEATH) return -1;

		ret = dead->death_msg;
		regs_savereturn(&parent->regs, ret);
		process_transition(parent, PS_RUNNING);
	}

	process_free(dead);
	return ret;
}