#include #include #include #include #include #include #include #include struct process *process_first; struct process *process_current; static uint32_t next_pid = 0; struct process *process_seed(void) { struct process *proc = kmalloc(sizeof *proc); proc->pages = pagedir_new(); proc->state = PS_RUNNING; proc->sibling = NULL; proc->child = NULL; proc->parent = NULL; proc->mount = vfs_mount_seed(); proc->id = next_pid++; proc->handled_req = NULL; proc->controlled = NULL; process_first = proc; for (int i = 0; i < HANDLE_MAX; i++) proc->handles[i].type = HANDLE_EMPTY; // map the stack to the last page in memory pagedir_map(proc->pages, (userptr_t)~PAGE_MASK, page_alloc(1), true, true); proc->regs.esp = (userptr_t) ~0xF; // map the kernel // yup, .text is writeable too. the plan is to not map the kernel // into user memory at all, but i'll implement that later. TODO for (size_t p = 0x100000; p < (size_t)&_bss_end; p += PAGE_SIZE) pagedir_map(proc->pages, (userptr_t)p, (void*)p, false, true); // the kernel still has to load the executable code and set EIP return proc; } struct process *process_fork(struct process *parent) { struct process *child = kmalloc(sizeof *child); memcpy(child, parent, sizeof *child); child->pages = pagedir_copy(parent->pages); child->sibling = parent->child; child->child = NULL; child->parent = parent; parent->child = child; parent->handled_req = NULL; // TODO control this with a flag if (child->controlled) child->controlled->potential_handlers++; child->id = next_pid++; return child; } void process_free(struct process *p) { assert(p->state == PS_DEADER); pagedir_free(p->pages); if (p->child) { // TODO // panic_invalid_state(); return; } if (p->parent && p->parent->child == p) { p->parent->child = p->sibling; } else { // this would be simpler if siblings were a doubly linked list struct process *prev = p->parent->child; while (prev->sibling != p) { prev = prev->sibling; assert(prev); } prev->sibling = p->sibling; } kfree(p); } void process_switch(struct process *proc) { assert(proc->state == PS_RUNNING); process_current = proc; pagedir_switch(proc->pages); sysexit(proc->regs); } _Noreturn void process_switch_any(void) { struct process *found = process_find(PS_RUNNING); if (found) process_switch(found); process_idle(); } _Noreturn void process_idle(void) { struct process *procs[16]; size_t len = process_find_multiple(PS_WAITS4IRQ, procs, 16); if (len == 0) { mem_debugprint(); cpu_shutdown(); } for (;;) { for (size_t i = 0; i < len; i++) { if (procs[i]->waits4irq.ready()) { /* if this is entered during the first iteration, it indicates a * kernel bug. this should be logged. TODO? */ procs[i]->waits4irq.callback(procs[i]); process_switch_any(); } } cpu_pause(); } } struct process *process_next(struct process *p) { /* is a weird depth-first search, the search order is: * 1 * / \ * 2 5 * /| |\ * 3 4 6 7 */ if (!p) return NULL; if (p->child) return p->child; if (p->sibling) return p->sibling; /* looking at the diagram above - we're at 4, want to find 5 */ while (!p->sibling) { p = p->parent; if (!p) return NULL; } return p->sibling; } struct process *process_find(enum process_state target) { struct process *result = NULL; process_find_multiple(target, &result, 1); return result; } size_t process_find_multiple(enum process_state target, struct process **buf, size_t max) { size_t i = 0; for (struct process *p = process_first; i < max && p; p = process_next(p)) { if (p->state == target) buf[i++] = p; } return i; } handle_t process_find_handle(struct process *proc) { handle_t handle; for (handle = 0; handle < HANDLE_MAX; handle++) { if (proc->handles[handle].type == HANDLE_EMPTY) break; } if (handle == HANDLE_MAX) handle = -1; return handle; } void process_transition(struct process *p, enum process_state state) { enum process_state last = p->state; p->state = state; switch (state) { case PS_RUNNING: assert(last != PS_DEAD && last != PS_DEADER); break; case PS_DEAD: assert(last == PS_RUNNING); break; case PS_DEADER: assert(last == PS_DEAD); process_free(p); break; case PS_WAITS4CHILDDEATH: case PS_WAITS4FS: case PS_WAITS4REQUEST: assert(last == PS_RUNNING); break; case PS_WAITS4IRQ: assert(last == PS_WAITS4FS); break; } } void process_kill(struct process *proc, int ret) { // TODO kill children if (proc->controlled) { proc->controlled->potential_handlers--; if (proc->controlled->potential_handlers == 0) { // orphaned struct vfs_request *q = proc->controlled->queue; while (q) { struct vfs_request *q2 = q->queue_next; vfs_request_cancel(q, ret); q = q2; } } } if (proc->handled_req) { vfs_request_cancel(proc->handled_req, ret); } process_transition(proc, PS_DEAD); proc->death_msg = ret; process_try2collect(proc); if (proc == process_first) { kprintf("init killed, quitting..."); mem_debugprint(); cpu_shutdown(); } } int process_try2collect(struct process *dead) { struct process *parent = dead->parent; int ret; assert(dead->state == PS_DEAD); switch (parent->state) { case PS_WAITS4CHILDDEATH: ret = dead->death_msg; regs_savereturn(&parent->regs, ret); process_transition(parent, PS_RUNNING); process_transition(dead, PS_DEADER); return ret; default: return -1; // this return value isn't used anywhere // TODO enforce that, somehow? idk } }