#include #include #include #include #include #include #include #include #include #include struct process *process_first; struct process *process_current; static uint32_t next_pid = 0; struct process *process_seed(struct kmain_info *info) { process_first = kmalloc(sizeof *process_first); memset(process_first, 0, sizeof *process_first); process_first->state = PS_RUNNING; process_first->pages = pagedir_new(); process_first->mount = vfs_mount_seed(); process_first->id = next_pid++; // map the stack to the last page in memory pagedir_map(process_first->pages, (userptr_t)~PAGE_MASK, page_alloc(1), true, true); process_first->regs.esp = (userptr_t) ~0xF; // map the kernel // yup, .text is writeable too. the plan is to not map the kernel // into user memory at all, but i'll implement that later. TODO for (size_t p = 0x100000; p < (size_t)&_bss_end; p += PAGE_SIZE) pagedir_map(process_first->pages, (userptr_t)p, (void*)p, false, true); // map the init module as rw void __user *init_base = (userptr_t)0x200000; for (uintptr_t off = 0; off < info->init.size; off += PAGE_SIZE) pagedir_map(process_first->pages, init_base + off, info->init.at + off, true, true); process_first->regs.eip = init_base; return process_first; } struct process *process_fork(struct process *parent, int flags) { struct process *child = kmalloc(sizeof *child); memcpy(child, parent, sizeof *child); child->pages = pagedir_copy(parent->pages); child->sibling = parent->child; child->child = NULL; child->parent = parent; parent->child = child; child->noreap = (flags & FORK_NOREAP) > 0; parent->handled_req = NULL; // TODO control this with a flag if (child->controlled) { child->controlled->potential_handlers++; child->controlled->refcount++; } for (handle_t h = 0; h < HANDLE_MAX; h++) { if (child->handles[h]) child->handles[h]->refcount++; // no overflow check - if you manage to get 2^32 references to a handle you have bigger problems } assert(child->mount); child->mount->refs++; child->id = next_pid++; return child; } void process_forget(struct process *p) { assert(p->parent); if (p->parent->child == p) { p->parent->child = p->sibling; } else { // this would be simpler if siblings were a doubly linked list struct process *prev = p->parent->child; while (prev->sibling != p) { prev = prev->sibling; assert(prev); } prev->sibling = p->sibling; } } void process_free(struct process *p) { bool valid = false; if (p->state == PS_DEADER) valid = true; if (p->state == PS_DEAD && (!p->parent || p->parent->state == PS_DEAD || p->parent->state == PS_DEADER)) valid = true; assert(valid); while (p->child) process_free(p->child); // also could be done on kill vfs_mount_remref(p->mount); p->mount = NULL; if (p->controlled) { vfs_backend_refdown(p->controlled); p->controlled = NULL; } if (!p->parent) return; process_forget(p); pagedir_free(p->pages); // TODO could be done on kill kfree(p); } static _Noreturn void process_switch(struct process *proc) { assert(proc->state == PS_RUNNING); process_current = proc; pagedir_switch(proc->pages); sysexit(proc->regs); } /** If there are any processes waiting for IRQs, wait with them. Otherwise, shut down */ static _Noreturn void process_idle(void) { // this mess is temporary struct process *procs[16]; size_t len = process_find_multiple(PS_WAITS4IRQ, procs, 16); if (len == 0) shutdown(); cpu_pause(); for (size_t i = 0; i < len; i++) { if (procs[i]->waits4irq.ready()) { /* if this is entered during the first iteration, it indicates a * kernel bug. this should be logged. TODO? */ procs[i]->waits4irq.callback(procs[i]); } } process_switch_any(); } _Noreturn void process_switch_any(void) { if (process_current && process_current->state == PS_RUNNING) process_switch(process_current); struct process *found = process_find(PS_RUNNING); if (found) process_switch(found); process_idle(); } struct process *process_next(struct process *p) { /* is a weird depth-first search, the search order is: * 1 * / \ * 2 5 * /| |\ * 3 4 6 7 */ if (!p) return NULL; if (p->child) return p->child; if (p->sibling) return p->sibling; /* looking at the diagram above - we're at 4, want to find 5 */ while (!p->sibling) { p = p->parent; if (!p) return NULL; } return p->sibling; } struct process *process_find(enum process_state target) { struct process *result = NULL; process_find_multiple(target, &result, 1); return result; } size_t process_find_multiple(enum process_state target, struct process **buf, size_t max) { size_t i = 0; for (struct process *p = process_first; i < max && p; p = process_next(p)) { if (p->state == target) buf[i++] = p; } return i; } handle_t process_find_handle(struct process *proc, handle_t start_at) { // TODO start_at is a bit of a hack handle_t handle; for (handle = start_at; handle < HANDLE_MAX; handle++) { if (proc->handles[handle] == NULL) break; } if (handle >= HANDLE_MAX) handle = -1; return handle; } struct handle* process_handle_get(struct process *p, handle_t id, enum handle_type type) { struct handle *h; if (id < 0 || id >= HANDLE_MAX) return NULL; h = p->handles[id]; if (h == NULL || h->type != type) return NULL; return h; } void process_transition(struct process *p, enum process_state state) { enum process_state last = p->state; p->state = state; switch (state) { case PS_RUNNING: assert(last != PS_DEAD && last != PS_DEADER); break; case PS_DEAD: // see process_kill break; case PS_DEADER: assert(last == PS_DEAD); process_free(p); break; case PS_WAITS4CHILDDEATH: case PS_WAITS4FS: case PS_WAITS4REQUEST: assert(last == PS_RUNNING); break; case PS_WAITS4IRQ: assert(last == PS_WAITS4FS); break; case PS_LAST: panic_invalid_state(); } } void process_kill(struct process *p, int ret) { if (p->state == PS_DEAD || p->state == PS_DEADER) return; if (p->handled_req) { vfsreq_finish(p->handled_req, -1); p->handled_req = NULL; } if (p->controlled) { assert(p->controlled->potential_handlers > 0); p->controlled->potential_handlers--; if (p->controlled->potential_handlers == 0) { // orphaned struct vfs_request *q = p->controlled->queue; while (q) { struct vfs_request *q2 = q->queue_next; vfsreq_finish(q, -1); q = q2; } p->controlled->queue = NULL; } if (p->controlled->user.handler == p) { assert(p->state == PS_WAITS4REQUEST); p->controlled->user.handler = NULL; } vfs_backend_refdown(p->controlled); p->controlled = NULL; } // TODO VULN unbounded recursion struct process *c2; for (struct process *c = p->child; c; c = c2) { c2 = c->sibling; process_kill(c, -1); } struct vfs_request *req; switch (p->state) { case PS_RUNNING: case PS_WAITS4CHILDDEATH: case PS_WAITS4REQUEST: break; case PS_WAITS4FS: // if the request wasn't accepted we could just remove this process from the queue case PS_WAITS4IRQ: req = p->state == PS_WAITS4FS ? p->waits4fs.req : p->waits4irq.req; req->caller = NULL; // TODO test this break; case PS_DEAD: case PS_DEADER: case PS_LAST: kprintf("process_kill unexpected state 0x%x\n", p->state); panic_invalid_state(); } for (handle_t h = 0; h < HANDLE_MAX; h++) handle_close(p->handles[h]); process_transition(p, PS_DEAD); p->death_msg = ret; process_try2collect(p); } int process_try2collect(struct process *dead) { struct process *parent = dead->parent; int ret; assert(dead->state == PS_DEAD); if (!parent || dead->noreap) { process_transition(dead, PS_DEADER); return -1; } switch (parent->state) { case PS_WAITS4CHILDDEATH: ret = dead->death_msg; regs_savereturn(&parent->regs, ret); process_transition(parent, PS_RUNNING); process_transition(dead, PS_DEADER); return ret; case PS_DEAD: case PS_DEADER: process_transition(dead, PS_DEADER); return -1; default: return -1; // this return value isn't used anywhere // TODO enforce that, somehow? idk } }