#include #include #include #include #include #include #include #include #include #include static struct process *process_first = NULL; struct process *process_current; static uint32_t next_pid = 0; /** Removes a process from the process tree. */ static void process_forget(struct process *p); static _Noreturn void process_switch(struct process *proc); struct process *process_seed(void *data, size_t datalen) { assert(!process_first); process_first = kzalloc(sizeof *process_first); process_first->state = PS_RUNNING; process_first->pages = pagedir_new(); process_first->mount = vfs_mount_seed(); process_first->id = next_pid++; process_first->_handles = kzalloc(sizeof(struct handle) * HANDLE_MAX); // map .shared extern char _shared_len; for (size_t p = 0; p < (size_t)&_shared_len; p += PAGE_SIZE) pagedir_map(process_first->pages, (userptr_t)p, (void*)p, false, true); // map the init module as rw void __user *init_base = (userptr_t)0x200000; for (uintptr_t off = 0; off < datalen; off += PAGE_SIZE) pagedir_map(process_first->pages, init_base + off, data + off, true, true); process_first->regs.rcx = (uintptr_t)init_base; // SYSRET jumps to %rcx return process_first; } struct process *process_fork(struct process *parent, int flags) { struct process *child = kzalloc(sizeof *child); if (flags & FORK_SHAREMEM) { if (!parent->pages_refcount) { parent->pages_refcount = kmalloc(sizeof *parent->pages_refcount); *parent->pages_refcount = 1; } *parent->pages_refcount += 1; child->pages_refcount = parent->pages_refcount; child->pages = parent->pages; } else { child->pages = pagedir_copy(parent->pages); } child->regs = parent->regs; child->state = parent->state; assert(child->state == PS_RUNNING); // not copying the state union child->noreap = (flags & FORK_NOREAP) > 0; child->sibling = parent->child; child->child = NULL; child->parent = parent; parent->child = child; child->id = next_pid++; if ((flags & FORK_NEWFS) == 0 && parent->controlled) { child->controlled = parent->controlled; child->controlled->potential_handlers++; child->controlled->refcount++; } child->mount = parent->mount; assert(child->mount); child->mount->refs++; if (flags & FORK_SHAREHANDLE) { if (!parent->handles_refcount) { parent->handles_refcount = kmalloc(sizeof *parent->handles_refcount); *parent->handles_refcount = 1; } *parent->handles_refcount += 1; child->handles_refcount = parent->handles_refcount; child->_handles = parent->_handles; } else { child->_handles = kzalloc(sizeof(struct handle) * HANDLE_MAX); for (handle_t h = 0; h < HANDLE_MAX; h++) { child->_handles[h] = parent->_handles[h]; if (child->_handles[h]) child->_handles[h]->refcount++; } } return child; } /* meant to be used with p->*_refcount */ static bool unref(uint64_t *refcount) { if (!refcount) return true; assert(*refcount != 0); *refcount -= 1; if (*refcount == 0) { kfree(refcount); return true; } return false; } void process_kill(struct process *p, int ret) { if (p->state != PS_DEAD) { if (p->controlled) { // TODO vfs_backend_user_handlerdown assert(p->controlled->potential_handlers > 0); p->controlled->potential_handlers--; if (p->controlled->potential_handlers == 0) { // orphaned struct vfs_request *q = p->controlled->queue; while (q) { struct vfs_request *q2 = q->queue_next; vfsreq_finish_short(q, -1); q = q2; } p->controlled->queue = NULL; } if (p->controlled->user.handler == p) { assert(p->state == PS_WAITS4REQUEST); p->controlled->user.handler = NULL; } vfs_backend_refdown(p->controlled); p->controlled = NULL; } if (p->state == PS_WAITS4FS) { assert(p->reqslot); p->reqslot->caller = NULL; /* transfer ownership */ p->reqslot = NULL; } else if (p->reqslot) { kfree(p->reqslot); } if (p->state == PS_WAITS4PIPE) { struct process **iter = &p->waits4pipe.pipe->pipe.queued; while (*iter && *iter != p) { assert((*iter)->state == PS_WAITS4PIPE); iter = &(*iter)->waits4pipe.next; } assert(iter && *iter == p); *iter = p->waits4pipe.next; } if (p->state == PS_WAITS4TIMER) timer_deschedule(p); if (unref(p->handles_refcount)) { for (handle_t hid = 0; hid < HANDLE_MAX; hid++) process_handle_close(p, hid); kfree(p->_handles); } vfs_mount_remref(p->mount); p->mount = NULL; process_transition(p, PS_DEAD); p->death_msg = ret; if (p->execbuf.buf) { kfree(p->execbuf.buf); p->execbuf.buf = NULL; } if (unref(p->pages_refcount)) { pagedir_free(p->pages); } // TODO VULN unbounded recursion struct process *c2; for (struct process *c = p->child; c; c = c2) { c2 = c->sibling; process_kill(c, -1); } } assert(!p->child); process_try2collect(p); if (p == process_first) shutdown(); } void process_try2collect(struct process *dead) { assert(dead && dead->state == PS_DEAD); assert(!dead->child); struct process *parent = dead->parent; if (!dead->noreap && parent && parent->state != PS_DEAD) { /* reapable? */ if (parent->state != PS_WAITS4CHILDDEATH) return; /* don't reap yet */ regs_savereturn(&parent->regs, dead->death_msg); process_transition(parent, PS_RUNNING); } if (dead != process_first) { process_forget(dead); kfree(dead); } } /** Removes a process from the process tree. */ static void process_forget(struct process *p) { assert(p->parent); if (p->parent->child == p) { p->parent->child = p->sibling; } else { // this would be simpler if siblings were a doubly linked list struct process *prev = p->parent->child; while (prev->sibling != p) { prev = prev->sibling; assert(prev); } prev->sibling = p->sibling; } } static _Noreturn void process_switch(struct process *proc) { assert(proc->state == PS_RUNNING); process_current = proc; pagedir_switch(proc->pages); if (proc->execbuf.buf) execbuf_run(proc); else sysexit(proc->regs); } _Noreturn void process_switch_any(void) { for (;;) { if (process_current && process_current->state == PS_RUNNING) process_switch(process_current); for (struct process *p = process_first; p; p = process_next(p)) { if (p->state == PS_RUNNING) process_switch(p); } cpu_pause(); } } struct process *process_next(struct process *p) { /* depth-first search, the order is: * 1 * / \ * 2 5 * /| |\ * 3 4 6 7 */ if (!p) return NULL; if (p->child) return p->child; if (p->sibling) return p->sibling; /* looking at the diagram above - we're at 4, want to find 5 */ while (!p->sibling) { p = p->parent; if (!p) return NULL; } return p->sibling; } handle_t process_find_free_handle(struct process *proc, handle_t start_at) { for (handle_t hid = start_at; hid < HANDLE_MAX; hid++) { if (proc->_handles[hid] == NULL) return hid; } return -1; } struct handle *process_handle_get(struct process *p, handle_t id) { if (id < 0 || id >= HANDLE_MAX) return NULL; return p->_handles[id]; } handle_t process_handle_init(struct process *p, enum handle_type type, struct handle **hs) { handle_t hid = process_find_free_handle(p, 1); if (hid < 0) return -1; p->_handles[hid] = handle_init(type); if (hs) *hs = p->_handles[hid]; return hid; } handle_t process_handle_dup(struct process *p, handle_t from, handle_t to) { struct handle *fromh, **toh; if (to < 0) { to = process_find_free_handle(p, 0); if (to < 0) return -EMFILE; } else if (to >= HANDLE_MAX) { return -EBADF; } if (to == from) return to; toh = &p->_handles[to]; fromh = (from >= 0 && from < HANDLE_MAX) ? p->_handles[from] : NULL; if (*toh) handle_close(*toh); *toh = fromh; if (fromh) fromh->refcount++; return to; } struct handle *process_handle_take(struct process *p, handle_t hid) { if (hid < 0 || hid >= HANDLE_MAX) return NULL; struct handle *h = p->_handles[hid]; p->_handles[hid] = NULL; return h; } handle_t process_handle_put(struct process *p, struct handle *h) { assert(h); handle_t hid = process_find_free_handle(p, 1); if (hid < 0) { handle_close(h); return hid; } p->_handles[hid] = h; return hid; } void process_transition(struct process *p, enum process_state state) { assert(p->state != PS_DEAD); if (state != PS_RUNNING && state != PS_DEAD) assert(p->state == PS_RUNNING); p->state = state; }