#include #include #include #include #include #include #include #include #include #include static Proc *proc_first = NULL; static Proc *dead_leaves = NULL; /* linked list */ Proc *proc_cur; static uint32_t next_pid = 1; static void proc_prune_leaves(void); Proc *proc_seed(void *data, size_t datalen) { assert(!proc_first); proc_first = kzalloc(sizeof *proc_first, TagProcess); proc_first->state = PS_RUNNING; proc_first->pages = pagedir_new(); proc_first->mount = vfs_mount_seed(); proc_first->globalid = next_pid++; proc_first->hs = hs_init(); proc_first->pns = proc_first; proc_first->localid = 1; proc_first->nextlid = 2; // map .shared extern char _shared_len; for (size_t p = 0; p < (size_t)&_shared_len; p += PAGE_SIZE) pagedir_map(proc_first->pages, (userptr_t)p, (void*)p, false, true); // map the init module as rw void __user *init_base = (userptr_t)0x200000; for (uintptr_t off = 0; off < datalen; off += PAGE_SIZE) pagedir_map(proc_first->pages, init_base + off, data + off, true, true); proc_first->regs.rip = (uintptr_t)init_base; // proc_first->regs.r11 |= 1<<9; /* enable interrupts */ return proc_first; } Proc *proc_fork(Proc *parent, int flags) { Proc *child = kzalloc(sizeof *child, TagProcess); if (flags & FORK_SHAREMEM) { if (!parent->pages_refcount) { parent->pages_refcount = kmalloc(sizeof *parent->pages_refcount, TagPageRefcount); *parent->pages_refcount = 1; } *parent->pages_refcount += 1; child->pages_refcount = parent->pages_refcount; child->pages = parent->pages; } else { child->pages = pagedir_copy(parent->pages); } child->regs = parent->regs; child->state = parent->state; assert(child->state == PS_RUNNING); // not copying the state union child->intr_fn = parent->intr_fn; child->noreap = (flags & FORK_NOREAP) > 0; child->sibling = parent->child; child->child = NULL; child->parent = parent; parent->child = child; if (next_pid == 0) { panic_unimplemented(); } child->globalid = next_pid++; child->pns = parent->pns; if (child->pns->nextlid == 0) { panic_unimplemented(); } child->localid = child->pns->nextlid++; if ((flags & FORK_NEWFS) == 0 && parent->controlled) { child->controlled = parent->controlled; assert(child->controlled->is_user); assert(child->controlled->user.provhcnt); child->controlled->user.provhcnt++; } child->mount = parent->mount; assert(child->mount); child->mount->refs++; if (flags & FORK_SHAREHANDLE) { child->hs = parent->hs; parent->hs->refcount++; } else { child->hs = hs_copy(parent->hs); } return child; } bool proc_ns_contains(Proc *ns, Proc *proc) { /* a namespace contains all the processes with ->ns == ns and all their * direct children */ if (ns == proc) return true; if (proc->parent == NULL) return false; return proc->parent->pns == ns; } uint32_t proc_ns_id(Proc *ns, Proc *proc) { if (proc == ns) { return 1; } else { if (proc->pns == proc) { assert(proc->parent->pns == ns); } else { assert(proc->pns == ns); } return proc->localid; } } Proc *proc_ns_byid(Proc *ns, uint32_t id) { assert(ns->pns == ns); for (Proc *it = ns; it; it = proc_ns_next(ns, it)) { if (proc_ns_id(ns, it) == id) { return it; } } return NULL; } /** Used for iterating over all processes in ns. */ Proc *proc_ns_next(Proc *ns, Proc *p) { /* analogous to proc_next */ assert(ns); assert(ns->pns == ns); /* is ns the namespace root? */ assert(p); assert(proc_ns_contains(ns, p)); if (p->child && proc_ns_contains(ns, p->child)) { return p->child; } while (!p->sibling) { if (p == ns) return NULL; p = p->parent; assert(p); assert(proc_ns_contains(ns, p)); } if (p == ns) return NULL; return p->sibling; } void proc_ns_create(Proc *proc) { // TODO test this. lots of fucky behaviour can happen here // TODO document process namespaces Proc *old = proc->pns; if (old == proc) return; proc->pns = proc; proc->nextlid = 2; for (Proc *it = proc; it; ) { if (it != proc) { if (proc->nextlid < it->localid + 1) { proc->nextlid = it->localid + 1; } if (it->pns == old) { it->pns = proc; } else { assert(it->pns == it); } } /* analogous to proc_ns_next - which can't be used directly as it gets * confused by changing namespaces */ /* descend into children who own their own namespace, but no further */ if (it->child && (proc_ns_contains(proc, it->child) || proc_ns_contains(old, it->child))) { it = it->child; continue; } if (it == proc) { break; } while (!it->sibling) { it = it->parent; if (it == proc) break; assert(it); } it = it->sibling; } } /* meant to be used with p->*_refcount */ static bool unref(uint64_t *refcount) { if (!refcount) return true; assert(*refcount != 0); *refcount -= 1; if (*refcount == 0) { kfree(refcount); return true; } return false; } void proc_kill(Proc *p, int ret) { if (proc_alive(p)) { if (p->controlled) { assert(p->controlled->is_user); if (p->controlled->user.handler == p) { assert(p->state == PS_WAITS4REQUEST); p->controlled->user.handler = NULL; } vfsback_provdown(p->controlled); p->controlled = NULL; } if (p->state == PS_WAITS4FS) { assert(p->reqslot); p->reqslot->caller = NULL; p->reqslot = NULL; } if (p->state == PS_WAITS4PIPE) { Proc **iter = &p->waits4pipe.pipe->pipe.queued; while (*iter && *iter != p) { assert((*iter)->state == PS_WAITS4PIPE); iter = &(*iter)->waits4pipe.next; } assert(iter && *iter == p); *iter = p->waits4pipe.next; } if (p->state == PS_WAITS4TIMER) { timer_deschedule(p); } hs_unref(p->hs); p->hs = NULL; vfs_mount_remref(p->mount); p->mount = NULL; proc_setstate(p, PS_DYING); p->death_msg = ret; /* tombstone TOREAP children */ for (Proc *it = p->child; it; ) { Proc *sibling = it->sibling; if (it->state == PS_TOREAP) { proc_tryreap(it); } it = sibling; } if (p->execbuf.buf) { kfree(p->execbuf.buf); p->execbuf.buf = NULL; } if (unref(p->pages_refcount)) { pagedir_free(p->pages); } p->pages = NULL; } if (p->state == PS_DYING) { if (p->parent && proc_alive(p->parent)) { proc_setstate(p, PS_TOREAP); } else { proc_setstate(p, PS_TOMBSTONE); } } if (p == proc_first) { proc_prune_leaves(); if (p->child) { _panic("init killed prematurely"); } shutdown(); } else { proc_tryreap(p); } } void proc_tryreap(Proc *dead) { Proc *parent; assert(dead && !proc_alive(dead)); parent = dead->parent; if (parent) assert(parent->child); if (dead->state == PS_TOREAP) { if (!dead->noreap && parent && proc_alive(parent) && parent->state != PS_DYING) { /* reapable? */ if (parent->state != PS_WAITS4CHILDDEATH) { return; /* don't reap yet */ } uint32_t pid = proc_ns_id(parent->pns, dead); if (parent->awaited_death.pid && parent->awaited_death.pid != pid) { return; /* we're not The One */ } regs_savereturn(&parent->regs, pid); if (parent->awaited_death.out) { struct sys_wait2 __user *out = parent->awaited_death.out; struct sys_wait2 data; memset(&data, 0, sizeof data); data.status = dead->death_msg; pcpy_to(parent, out, &data, sizeof data); } proc_setstate(parent, PS_RUNNING); } /* can't be reaped anymore */ proc_setstate(dead, PS_TOMBSTONE); dead->noreap = true; } if (dead->child) { assert(dead->state == PS_TOMBSTONE); for (Proc *p = dead->child; p; p = p->sibling) { assert(p->state != PS_TOREAP); } Proc *p = dead->child; while (p->child) { p = p->child; } if (p->state == PS_TOREAP) { assert(proc_alive(p->parent)); } else { assert(proc_alive(p) || p->state == PS_DEADLEAF); } return; /* keep the tombstone */ } if (!parent) return; /* not applicable to init */ assert(dead->refcount == 0); if (dead->state == PS_TOMBSTONE) { proc_setstate(dead, PS_DEADLEAF); /* not altering the process tree right now to prevent breaking tree * traversals */ dead->deadleaf_next = dead_leaves; dead_leaves = dead; } else { assert(dead->state == PS_DEADLEAF); } } void proc_tryintr(Proc *p) { if (p->state == PS_WAITS4TIMER) { timer_deschedule(p); } } void proc_intr(Proc *p, const char *buf, size_t len) { assert(buf != NULL || len == 0); if (4 <= len && memcmp(buf, "kill", 4) == 0) { proc_kill(p, EINTR); return; } if (!p->intr_fn) return; proc_tryintr(p); /* save old rsp,rip */ struct intr_data d; void __user *sp = p->regs.rsp - 128 - sizeof(d); d.ip = (void __user *)p->regs.rip; d.sp = p->regs.rsp; pcpy_to(p, sp, &d, sizeof(d)); /* switch to intr handler */ p->regs.rip = (uint64_t)p->intr_fn; p->regs.rsp = sp; } static void proc_prune_leaves(void) { while (dead_leaves) { Proc *p = dead_leaves; Proc *parent = p->parent; dead_leaves = p->deadleaf_next; assert(p->state == PS_DEADLEAF); assert(p->parent); assert(p->parent->child); assert(!p->child); if (p->parent->child == p) { p->parent->child = p->sibling; } else { // this would be simpler if siblings were a doubly linked list Proc *prev = p->parent->child; while (prev->sibling != p) { prev = prev->sibling; assert(prev); } prev->sibling = p->sibling; } proc_setstate(p, PS_FREED); kfree(p); if (!proc_alive(parent)) { proc_tryreap(parent); } } } _Noreturn void proc_switch_any(void) { /* At this point there will be no leftover pointers to forgotten * processes on the stack, so it's safe to free them. */ proc_prune_leaves(); for (;;) { Proc *p = NULL; if (proc_cur && proc_cur->state == PS_RUNNING) { p = proc_cur; } else { for (p = proc_first; p; p = proc_next(proc_first, p)) { if (p->state == PS_RUNNING) { break; } } } if (p) { assert(p->state == PS_RUNNING); proc_cur = p; pagedir_switch(p->pages); if (p->execbuf.buf) { execbuf_run(p); } else { sysexit(p->regs); } } else { cpu_pause(); } } } /** Used for iterating over all descendants of root. */ Proc *proc_next(Proc *root, Proc *p) { /* depth-first traversal, in this order: * 1 * / \ * 2 5 * /| |\ * 3 4 6 7 */ assert(root); assert(p); if (p->child) return p->child; /* looking at the diagram above - we're at 4, want to find 5 */ while (!p->sibling) { if (p == root) return NULL; p = p->parent; assert(p); } if (p == root) return NULL; return p->sibling; } void proc_setstate(Proc *p, enum proc_state state) { assert(p->state != PS_FREED); if (state == PS_FREED) { assert(p->state == PS_DEADLEAF); } else if (state == PS_DEADLEAF) { assert(p->state == PS_TOMBSTONE); } else if (state == PS_TOMBSTONE) { assert(p->state == PS_TOREAP || p->state == PS_DYING); } else if (state == PS_TOREAP) { assert(p->state == PS_DYING); assert(!p->parent || proc_alive(p->parent)); for (Proc *it = p->child; it; it = it->sibling) { assert(p->state != PS_TOREAP); } } else if (state != PS_RUNNING && state != PS_DYING) { assert(p->state == PS_RUNNING); } p->state = state; }